Abstract
The aim of this study was to clarify the phytochemical property evaluation of Roselle plants grown under bio Azotobacterine (Azotobacterchroococcum) and phosphorein (Bacillus polymyxa) and mineral (N, P and K fertilizers at the rates of 25, 50 and 100% from the doses recommended by Ministry of Agriculture) fertilizers applied in different types of soil. Samples of Roselle plants were obtained from different soils (clay soil at Dar El-Ramad farm, sandy loam and saline loamy sand soil at Demo farm, Faculty of Agriculture) at El-Fayoum governorate conditions. Moreover, some of the phytochemical properties (N, P and K percentage in roselle herb and its uptake, photosynthetic pigments (chlorophyll A, chlorophyll B and carotenoids), anthocyanin pigment and pH value) of roselle plants (Hibiscus sabdariffa, L.) under different soils were determined. The data obtained showed that, bio and mineral (NPK) fertilizers increased the above compositions of roselle plants under different soils of experiment. The maximum increase of these compositions was obtained by the treatment clay soil × 100% NPK + bio fertilizers, followed by clay soil × 50% NPK + bio fertilizers as compared to saline loamy sand soil × non fertilizer treatment, although, the differences between these treatments and mineral fertilizer at the rate of 100% NPK alone were insignificantly. Therefore, it is economically and environmentally recommended to inoculate roselle seeds with mixture of Azotobacter + Bacillus and fertilize these inoculated plants with 50% NPK for improve chemical compositions (N, P and K percentage in roselle herb and its uptake, photosynthetic pigments (chlorophyll A, chlorophyll B and carotenoids), anthocyanin pigment and pH value) of roselle plants under clay soil. Key words: Roselle, Hibiscus sabdariffa L., nitrogen, phosphorus, potassium, biofertilization, soil type, salinity, chemical composition.
Reference52 articles.
1. Mahadevan, N., R. Shivali, P. Kamboj (2009). Hibiscus subdariffa Linn. - An overview. Nat. Prod. Rad., 8(1): 77-83.
2. Copley, L.S. (1975). An introduction to the botany of tropical crops. Longman Group, U.K.
3. Ahmed, A.H.R. and A.M. Nour (1981). Promising Karkade seed derivatives: Edible oil and karkade, Annual Report, Food Research Center. Shambat, Sudan.
4. Tewari, S. and N.K.n Arora (2016). Fluorescent Pseudomonas sp. PF17 as an efcient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68: 99–108.
5. Arora, N.K., M. Verma, J. Prakash, J. Mishra (2016). Regulation of biopesticides: global concerns and policies. In: Bioformulations for sustainable agriculture. Springer, New Delhi, p.283–299.