Performance investigation of hybrid photovoltaic thermal-heat with mini-channels for application in electric vehicles

Author:

Dariusz Strąk1ORCID

Affiliation:

1. Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Polska

Abstract

The first autonomous car was developed in the 1980s, but it wasn't until the early 2010s that the technology began to gain significant attention and investment. In 2010, Google began testing self-driving cars on public roads, and since then, many other companies have joined the race to develop fully autonomous vehicles. Hybrid PVT (Photovoltaic Thermal) heat exchangers cooled with mini-channels find application in autonomous vehicles as a solution that enables efficient cooling of the vehicle's electronics and batteries. The solution involves using photovoltaic panels to generate electricity and removing the heat produced during the process using mini-channels is removed by mini-channels. Hybrid PVT heat exchangers cooled with mini-channels can help maintain appropriate temperatures inside autonomous vehicles that generate large amounts of heat from electronic systems and sensors. The setup can improve the performance and reliability of autonomous systems, increase energy efficiency, and reduce energy demands. The experimental setup includes two parallel mini-channel systems separated by a smooth copper plate. The study aims to determine local heat-transfer coefficients, with a cooled solar cell efficiency range of 10% to 14% compared to other research. The cooled PV temperature range achieved was from 19.6 to 22.4 degrees Celsius, which is favorable for photovoltaic panels' operation under approximate light intensity for Poland's latitude. Heat-transfer from hot surfaces to cold fluids is analyzed during single-phase convection using two calculation methods: one-dimensional and numerical simulations using Simcenter STAR CCM+. Cooling photovoltaic modules is critical for the photovoltaic and autonomous vehicle systems sector, making this research significant both theoretically and practically. The research and methods presented in the article on mini-channel cooling of photovoltaic systems and autonomous vehicle systems are innovative at a global scale, and are crucial for further development of sustainable energy systems and reduction of greenhouse gas emissions.

Publisher

Siec Badawcza Lukasiewicz - Przemyslowy Instytut Motoryzacji

Subject

Renewable Energy, Sustainability and the Environment

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3