Abstract
High convergence order methods are important in computational mathematics, since they generate sequences converging to a solution of a non-linear equation. The derivation of the order requires Taylor series expansions and the existence of derivatives not appearing on the method. Therefore, these results cannot assure the convergence of the method in those cases when such high order derivatives do not exist. But, the method may converge.
In this article, a process is introduced by which the semi-local convergence analysis of a sixth order method is obtained using only information from the operators on the method. Numerical examples are included to complement the theory.
Publisher
Academia Romana Filiala Cluj
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献