1. Barsky, B. A., The beta-splines: a local representation based on shape parameters and fundamental geometric measures, Ph.D. dissertation, University of Utah, 1981.
2. Carnicer, J. M., Sign consistency and shape properties, in Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, pp. 41-48, 1998.
3. Carnicer, J. M., Goodman, T. N. T. and Peña, J. M., A generalization of the variation diminishing property, Adv. Comput. Math., 3, no. 4, pp. 375--394, 1995, https://doi.org/10.1007/BF02432004.
4. Carnicer, J. M. and Peña, J. M., Shape preserving representation and optimality of the Bernstein basis, Adv. Comput. Math., 1, no. 2, pp. 173-196, 1993, https://doi.org/10.1007/BF02071384.
5. Carnicer, J. M. and Peña, J. M., Totally positive bases for shape preserving curves design and optimality of B-splines, Comput. Aided Geom. Design, 11, no. 6, pp. 633-654, 1994, https://doi.org/10.1016/0167-8396(94)90056-6.