Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning

Author:

Korfiatis Panagiotis,Kline Timothy L.,Erickson Bradley J.

Abstract

We present a deep convolutional neural network application based on autoencoders aimed at segmentation of increased signal regions in fluid-attenuated inversion recovery magnetic resonance imaging images. The convolutional autoencoders were trained on the publicly available Brain Tumor Image Segmentation Benchmark (BRATS) data set, and the accuracy was evaluated on a data set where 3 expert segmentations were available. The simultaneous truth and performance level estimation (STAPLE) algorithm was used to provide the ground truth for comparison, and Dice coefficient, Jaccard coefficient, true positive fraction, and false negative fraction were calculated. The proposed technique was within the interobserver variability with respect to Dice, Jaccard, and true positive fraction. The developed method can be used to produce automatic segmentations of tumor regions corresponding to signal-increased fluid-attenuated inversion recovery regions.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Smart Decision System for Early and Accurate Brain Tumor Prediction;EAI/Springer Innovations in Communication and Computing;2024

2. Review on brain-computer interface technologies in healthcare;Biophysical Reviews;2023-09-14

3. Enc‐Unet: A novel method for Glioma segmentation;International Journal of Imaging Systems and Technology;2022-11-05

4. Application of Deep Learning in Radiation Therapy;Deep Learning for Targeted Treatments;2022-09-16

5. Trends in DNN Model Based Classification and Segmentation of Brain Tumor Detection;The Open Neuroimaging Journal;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3