Quantitative Image Quality Comparison of Reduced- and Standard-Dose Dual-Energy Multiphase Chest, Abdomen, and Pelvis CT

Author:

Buty Mario,Xu Ziyue,Wu Aaron,Gao Mingchen,Nelson Chelyse,Papadakis Georgios Z.,Teomete Uygar,Celik Haydar,Turkbey Baris,Choyke Peter,Mollura Daniel J.,Bagci Ulas,Folio Les R.

Abstract

We present a new image quality assessment method for determining whether reducing radiation dose impairs the image quality of computed tomography (CT) in qualitative and quantitative clinical analyses tasks. In this Institutional Review Board-exempt study, we conducted a review of 50 patients (male, 22; female, 28) who underwent reduced-dose CT scanning on the first follow-up after standard-dose multiphase CT scanning. Scans were for surveillance of von Hippel–Lindau disease (N = 26) and renal cell carcinoma (N = 10). We investigated density, morphometric, and structural differences between scans both at tissue (fat, bone) and organ levels (liver, heart, spleen, lung). To quantify structural variations caused by image quality differences, we propose using the following metrics: dice similarity coefficient, structural similarity index, Hausdorff distance, gradient magnitude similarity deviation, and weighted spectral distance. Pearson correlation coefficient and Welch 2-sample t test were used for quantitative comparisons of organ morphometry and to compare density distribution of tissue, respectively. For qualitative evaluation, 2-sided Kendall Tau test was used to assess agreement among readers. Both qualitative and quantitative evaluations were designed to examine significance of image differences for clinical tasks. Qualitative judgment served as an overall assessment, whereas detailed quantifications on structural consistency, intensity homogeneity, and texture similarity revealed more accurate and global difference estimations. Qualitative and quantitative results indicated no significant image quality degradation. Our study concludes that low(er)-dose CT scans can be routinely used because of no significant loss in quantitative image information compared with standard-dose CT scans.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3