Robust Detection for Chipless RFID Tags Based on Compact Printable Alphabets

Author:

Rmili ,Oussama ,Yousaf ,Hakim ,Mittra ,Aguili ,Tedjini

Abstract

This work presents a novel technique for designing chipless radio frequency identification (RFID) tags which, unlike the traditional tags with complex geometries, are both compact and printable. The tags themselves are alphabets, which offers the advantage of efficient visual recognition of the transmitted data in real-time via radio frequency (RF) waves. In this study, the alphabets (e.g., a, b and c) are realized by using copper etching on a thin dielectric substrate (TLX-8) backed by a ground plane. It is shown that the original signature of the frequency response of the backscattered radar cross-section (RCS) of the letter, displays dips that are unique to the individual letters. The tags have been simulated, fabricated and their monostatic cross-sections have been measured by using a dual-polarized Vivaldi antenna in the frequency band ranging from 6 to 13 GHz. The study also includes, for the first time, a detailed analysis of the impact of changing the shape of the tag owing to variation in the font type, size, spacing, and orientation. The proposed letters of the alphabet are easily printable on the tag and provide an efficient way to visually recognized them and, hence, to detect them in a robust way, even with a low coding density of 2.63 bit/cm2. The advantages of the proposed novel identification method, i.e., utilization of the both co- and cross-polar RCS characteristics for the printable clipless RFID tags are the enhancement of the coding density, security and better detection of the alphabet tags with different fonts by capturing the tag characteristics with better signal to noise ratio (SNR). Good agreement has been achieved between the measured and simulated results for both co- and cross-polarized cases.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3