Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021

Author:

Meng YangyangORCID,Qi Qingjie,Liu Jianzhong,Zhou Wei

Abstract

With the prosperous development of the urban metro network, the characteristics of the topological structure and node importance are changing dynamically. Most studies focus on static comparisons, and dynamic evolution research is rarely conducted. It is necessary to track the dynamic evolution mechanism of the metro network from the perspective of development. In this paper, the Shenzhen Metro Network (SZMN) topology from 2004 to 2021 was first modeled in Space L. Five kinds of node centralities in eight periods were measured. Then, the dynamic evolution characteristics of the SZMN network topology and node centralities were compared. Finally, an improved multi-attribute decision-making method (MADM) was used to evaluate the node importance, and the spatiotemporal-evolution mechanism of the node importance was discussed qualitatively and quantitatively. The results show that, with the spatiotemporal evolution of the SZMN, the nodes became more and more intensive, and the network tended to be assortative. The different kinds of node centralities changed variously over time. Moreover, the node importance of the SZMN gradually dispersed from the core area of Chegongmiao–Futian to the direction of the Airport and Shenzhen North. The node importance evolves dynamically over time, and it is closely related to the changes in the node type, surrounding nodes and whole network environment. This study reveals the dynamic evolution mechanism of the complex topology and node importance in the SZMN, which can provide scientific suggestions and decision support for the planning, construction, operation management and resilient sustainable development of the urban metro.

Funder

The Innovation and Entrepreneurship Science and Technology Project of China Coal Research In-stitute

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3