Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models

Author:

Malik Meena,Sharma SachinORCID,Uddin MueenORCID,Chen Chin-LingORCID,Wu Chih-Ming,Soni Punit,Chaudhary ShikhaORCID

Abstract

The proper handling of waste is one of the biggest challenges of modern society. Municipal Solid Waste (MSW) requires categorization into a number of types, including bio, plastic, glass, metal, paper, etc. The most efficient techniques proposed by researchers so far include neural networks. In this paper, a detailed summarization was made of the existing deep learning techniques that have been proposed to classify waste. This paper proposes an architecture for the classification of litter into the categories specified in the benchmark approaches. The architecture used for classification was EfficientNet-B0. These are compound-scaling based models proposed by Google that are pretrained on ImageNet and have an accuracy of 74% to 84% in top-1 over ImageNet. This research proposes EfficientNet-B0 model tuning for images specific to particular demographic regions for efficient classification. This type of model tuning over transfer learning provides a customized model for classification, highly optimized for a particular region. It was shown that such a model had comparable accuracy to that of EfficientNet-B3, however, with a significantly smaller number of parameters required by the B3 model. Thus, the proposed technique achieved efficiency on the order of 4X in terms of FLOPS. Moreover, it resulted in improvised classifications as a result of fine-tuning over region-wise specific litter images.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference26 articles.

1. Deep learning-based waste detection in natural and urban environments

2. Overview of Municipal Solid Waste Generation, Composition, and Management in India

3. Mass production of Scenedesmus incrassatulus in 8 and 40 liter disposable polyethylene bags with different culture media;Ceballos-Pinto;Rev. Latinoam. Microbiol.,1995

4. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes

5. Waste segregation using deep learning algorithm;Devi;Int. J. Innov. Technol. Explor. Eng.,2018

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3