Medication-Related Osteonecrosis of the Jaw: A Systematic Review and a Bioinformatic Analysis

Author:

Laputková Galina1ORCID,Talian Ivan1ORCID,Schwartzová Vladimíra2

Affiliation:

1. Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, Trieda SNP 1, 040 11 Košice, Slovakia

2. Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia

Abstract

The objective was to evaluate the current evidence regarding the etiology of medication-related osteonecrosis of the jaw (MRONJ). This study systematically reviewed the literature by searching PubMed, Web of Science, and ProQuest databases for genes, proteins, and microRNAs associated with MRONJ from the earliest records through April 2023. Conference abstracts, letters, review articles, non-human studies, and non-English publications were excluded. Twelve studies meeting the inclusion criteria involving exposure of human oral mucosa, blood, serum, saliva, or adjacent bone or periodontium to anti-resorptive or anti-angiogenic agents were analyzed. The Cochrane Collaboration risk assessment tool was used to assess the quality of the studies. A total of 824 differentially expressed genes/proteins (DEGs) and 22 microRNAs were extracted for further bioinformatic analysis using Cytoscape, STRING, BiNGO, cytoHubba, MCODE, and ReactomeFI software packages and web-based platforms: DIANA mirPath, OmicsNet, and miRNet tools. The analysis yielded an interactome consisting of 17 hub genes and hsa-mir-16-1, hsa-mir-21, hsa-mir-23a, hsa-mir-145, hsa-mir-186, hsa-mir-221, and hsa-mir-424. A dominance of cytokine pathways was observed in both the cluster of hub DEGs and the interactome of hub genes with dysregulated miRNAs. In conclusion, a panel of genes, miRNAs, and related pathways were found, which is a step toward understanding the complexity of the disease.

Funder

Slovak Research and Development Agency

Scientific Grant Agency of the Ministry of Education and Science of the Slovak Republic

Slovak Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3