Alterations in Rat Hippocampal Glutamatergic System Properties after Prolonged Febrile Seizures

Author:

Griflyuk Alexandra V.1,Postnikova Tatyana Y.1ORCID,Malkin Sergey L.1ORCID,Zaitsev Aleksey V.1ORCID

Affiliation:

1. Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia

Abstract

Febrile seizures during early childhood may result in central nervous system developmental disorders. However, the specific mechanisms behind the impact of febrile seizures on the developing brain are not well understood. To address this gap in knowledge, we employed a hyperthermic model of febrile seizures in 10-day-old rats and tracked their development over two months. Our objective was to determine the degree to which the properties of the hippocampal glutamatergic system are modified. We analyzed whether pyramidal glutamatergic neurons in the hippocampus die after febrile seizures. Our findings indicate that there is a reduction in the number of neurons in various regions of the hippocampus in the first two days after seizures. The CA1 field showed the greatest susceptibility, and the reduction in the number of neurons in post-FS rats in this area appeared to be long-lasting. Electrophysiological studies indicate that febrile seizures cause a reduction in glutamatergic transmission, leading to decreased local field potential amplitude. This impairment could be attributable to diminished glutamate release probability as evidenced by decreases in the frequency of miniature excitatory postsynaptic currents and increases in the paired-pulse ratio of synaptic responses. We also found higher threshold current causing hind limb extension in the maximal electroshock seizure threshold test of rats 2 months after febrile seizures compared to the control animals. Our research suggests that febrile seizures can impair glutamatergic transmission, which may protect against future seizures.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3