Transient Receptor Potential Vanilloid 4-Dependent Microglial Function in Myelin Injury and Repair

Author:

Holloman Jameson P.1,Dimas Sophia H.2,Archambault Angela S.1,Filipello Fabia1,Du Lixia3,Feng Jing3ORCID,Zhao Yonghui3,Bollman Bryan1,Piccio Laura1,Steelman Andrew J.24ORCID,Hu Hongzhen3,Wu Gregory F.15ORCID

Affiliation:

1. Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA

2. Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

3. Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA

4. Department Neuroscience Program, Division of Nutritional Sciences, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

5. Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA

Abstract

Microglia are found pathologically at all stages of multiple sclerosis (MS) lesion development and are hypothesized to contribute to both inflammatory injury and neuroprotection in the MS brain. Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed, play an important role as environmental sensors, and are involved in calcium homeostasis for a variety of cells. TRPV4 modulates myeloid cell phagocytosis in the periphery and microglial motility in the central nervous system. We hypothesized that TRPV4 deletion would alter microglia phagocytosis in vitro and lessen disease activity and demyelination in experimental autoimmune encephalitis (EAE) and cuprizone-induced demyelination. We found that genetic deletion of TRPV4 led to increased microglial phagocytosis in vitro but did not alter the degree of demyelination or remyelination in the cuprizone mouse model of MS. We also found no difference in disease in EAE following global or microglia-specific deletion of Trpv4. Additionally, lesioned and normal appearing white matter from MS brains exhibited similar TRPV4 expression compared to healthy brain tissue. Taken together, these findings indicate that TRPV4 modulates microglial activity but does not impact disease activity in mouse models of MS, suggesting a muted and/or redundant role in MS pathogenesis.

Funder

National Institute of Neurological Disorders and Stroke

National Multiple Sclerosis Society

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3