Fault Detection on the Edge and Adaptive Communication for State of Alert in Industrial Internet of Things

Author:

Santo Yuri1,Immich Roger2ORCID,Dalmazo Bruno L.3ORCID,Riker André1

Affiliation:

1. Institute of Exact and Natural Sciences (ICEN), Federal University of Pará, Belém 66075-110, Brazil

2. Metropole Digital Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil

3. Computer Science Center (C3), Federal University of Rio Grande, Rio Grande 96203-900, Brazil

Abstract

Industrial production and manufacturing systems require automation, reliability, as well as low-latency intelligent control. Industrial Internet of Things (IIoT) is an emerging paradigm that enables precise, low latency, intelligent computing, supported by cutting-edge technology such as edge computing and machine learning. IIoT provides some of the essential building blocks to drive manufacturing systems to the next level of productivity, efficiency, and safety. Hardware failures and faults in IIoT are critical challenges to be faced. These anomalies can cause accidents and financial loss, affect productivity, and mobilize staff by producing false alarms. In this context, this article proposes a framework called Detection and Alert State for Industrial Internet of Things Faults (DASIF). The DASIF framework applies edge computing to execute highly precise and low latency machine learning models to detect industrial IoT faults and autonomously enforce an adaptive communication policy, triggering a state of alert in case of fault detection. The state of alert is a pre-stage countermeasure where the network increases communication reliability by using data replication combined with multiple-path communication. When the system is under alert, it can process a fine-grained inspection of the data for efficient decison-making. DASIF performance was obtained considering a simulation of the IIoT network and a real petrochemical dataset.

Funder

PROPESP/UFPA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3