1. Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., and Garnett, R. (2017, January 4–9). Attention is All you Need. Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA.
2. Choromanski, K.M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlós, T., Hawkins, P., Davis, J.Q., Mohiuddin, A., and Kaiser, L. (2021, January 3–7). Rethinking Attention with Performers. Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria.
3. Huang, L., Cao, S., Parulian, N., Ji, H., and Wang, L. (2021, January 6–11). Efficient Attentions for Long Document Summarization. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online.
4. Beltagy, I., Peters, M.E., and Cohan, A. (2020). Longformer: The Long-Document Transformer. arXiv.
5. Korhonen, A., Traum, D.R., and Màrquez, L. (August, January 28). Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy. Volume 1: Long Papers.