Numerical Study of Rarefied Gas Flow in Diverging Channels of Finite Length at Various Pressure Ratios

Author:

Tantos Christos1,Litovoli Foteini2,Teichmann Tim1ORCID,Sarris Ioannis2ORCID,Day Christian1

Affiliation:

1. Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

2. Department of Mechanical Engineering, University of West Attica, 12241 Athens, Greece

Abstract

In the present work, the gas flows through diverging channels driven by small, moderate, and large pressure drops are studied, considering a wide range of the gas rarefaction from free molecular limit through transition flow regime up to early slip regime. The analysis is performed using the Shakhov kinetic model, and applying the deterministic DVM method. The complete 4D flow problem is considered by including the upstream and downstream reservoirs. A strong effect of the channel geometry on the flow pattern is shown, with the distributions of the macroscopic quantities differing qualitatively and quantitatively from the straight channel flows. The mass flow rate data set from the complete solution is compared with the corresponding set obtained from the approximate kinetic methodology, which is based on the fully developed mass flow rate data available in the literature. In addition, the use of the end-effect approach significantly improves the applicability range of the approximate kinetic methodology. The influence of the wall temperature on the flow characteristics is also studied and is found to be strong in less-rarefied cases, with the mass flow rate in these cases being a decreasing function of the temperature wall. Overall, the present analysis is expected to be useful in the development and optimization of technological devices in vacuum and aerospace technologies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3