Experimental Investigation of the Performance of a Novel Ejector–Diffuser System with Different Supersonic Nozzle Arrays

Author:

Xu Dachuan12,Gu Yunsong1,Li Wei3,Chen Jingxiang2ORCID

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

The supersonic–supersonic ejector–diffuser system is employed to suck supersonic low-pressure and low-temperature flow into a high-pressure environment. A new design of a supersonic–supersonic ejector–diffuser was introduced to verify pressure control performance under different operating conditions and vacuum background pressure. A 1D analysis was used to predict the geometrical structure of an ejector–diffuser with a rectangular section based on the given operating conditions. Different numbers and types of nozzle plates were designed and installed on the ejector to study the realizability of avoiding or postponing the aerodynamic choking phenomenon in the mixing section. The effects of different geometrical parameters on the operating performance of the ejector–diffuser system were discussed in detail. Experimental investigation of the effects of different types of nozzle plates and the back pressures on the pressure control performance of the designed ejector–diffuser system were performed in a straight-flow wind tunnel. The results showed that the position, type and number of the nozzle plates have a significant impact on the beginning of the formation of aerodynamic choking. The geometry of the ejector and the operating conditions, especially the backpressure and inlet pressure of the ejecting stream, determined the entrainment ratio of the two supersonic streams. The experimental results showed that long nozzle-plate had a better performance in terms of maintaining pressure stability in the test section, while short a nozzle-plate had a better pressure matching performance and could maintain a higher entrainment ratio under high backpressure conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3