Fly by Feel: Flow Event Detection via Bioinspired Wind-Hairs

Author:

Court Alecsandra1ORCID,Bruecker Christoph1ORCID

Affiliation:

1. Department of Engineering, City, University of London, Northampton Square, London EC1V 0HB, UK

Abstract

Bio-inspired flexible pillar-like wind-hairs show promise for the future of flying by feel by detecting critical flow events on an aerofoil during flight. To be able to characterise specific flow disturbances from the response of such sensors, quantitative PIV measurements of such flow-disturbance patterns were compared with sensor outputs under controlled conditions. Experiments were performed in a flow channel with an aerofoil equipped with a 2D array of such sensors when in uniform inflow conditions compared to when a well-defined gust was introduced upstream and was passing by. The gust was generated through the sudden deployment of a row of flaps on the suction side of a symmetric wing that was placed upstream of the aerofoil with the sensors. The resulting flow disturbance generated a starting vortex with two legs, which resembled a horseshoe-type vortex shed into the wake. Under the same tunnel conditions, PIV measurements were taken downstream of the gust generator to characterise the starting vortex, while further measurements were taken with the sensing pillars on the aerofoil in the same location. The disturbance pattern was compared to the pillar response to demonstrate the potential of flow-sensing pillars. It was found that the pillars could detect the arrival time and structural pattern of the flow disturbance, showing the characteristics of the induced flow field of the starting vortex when passing by. Therefore, such sensor arrays can detect the “footprint” of disturbances as temporal and spatial signatures, allowing us to distinguish those from others or noise.

Funder

BAE SYSTEMS Sir Richard Oliver Chair

City University of London

Worshipful Company of Scientific Instrument Makers

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3