Abstract
With zinc acetate and butyl titanate as raw materials, pure ZnO and ZnTiO3/ZnO composite photocatalysts were synthesized by a sol–gel method and calcined at 550 °C. The crystal structure, morphology, surface area, optical property, and element valence states of samples were characterized and the photocatalytic activity of the prepared photocatalysts were assessed by the degradation of rhodamine B. Results show that the crystal structure of ZnO is a hexagonal wurtzite phase with a band gap of 3.20 eV. When the Zn/Ti molar ratio reaches 0.2, ZnTiO3 phase appears and ZnTiO3/ZnO composite forms, which advances the transfer of photogenerated charges. ZnTiO3/ZnO (Ti/Zn = 0.2) exhibits the highest photocatalytic activity, and the degradation degree of RhB reaches 99% after 60 min, which is higher than that of pure ZnO (90%). An exorbitant Ti/Zn molar ratio will reduce the crystallinity and form more amorphous components, which is not conducive to photocatalytic performance. Therefore, when the Ti/Zn molar ratio exceeds 0.2, the photocatalytic activities of ZnTiO3/ZnO composites decrease.
Funder
the Open Research Subject of Powder Metallurgy Engineering Technology Research Center of Sichuan Province
Subject
General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献