Comparative Preparation Method and Associated Cost of Lignin–Cellulose Nanocrystals

Author:

Zhang YiORCID,Haque Abu Naser Md AhsanulORCID,Naebe MaryamORCID

Abstract

Lignin is a natural source of UV-shielding materials, though its recalcitrant and heterogeneous structure makes the extraction and purification processes complex. However, lignin’s functionality can be directly utilised when it stays as native with cellulose and hemicellulose in plant biomass, rather than being separated. The fabrication process of this native lignin is sustainable, as it consumes less energy and chemicals compared to purified lignin; thus, it is an economic and more straightforward approach. In this study, the properties of native and purified lignin–cellulose nanocrystals (L–CNCs) sourced from hemp hurd waste were compared to explore the differences in their morphology, UV-shielding properties and chemical structure affected by their distinct fabrication process. These two kinds of L–CNCs were further added into polyvinyl alcohol (PVA) to evaluate their reinforcement characteristics. The resulting native L–CNCs/PVA film showed stronger UV-shielding ability than purified L–CNCs. Moreover, the native L–CNCs showed better compatibility with PVA, while the purified L–CNCs/PVA interfaces showed phase separation. The phase separation in purified L–CNCs/PVA films reduced the films’ tensile strength and Young’s modulus and increased the water vapour transmission. The laboratory-scale cost of native L–CNCs production (~AUD 80/kg) was only 10% of purified L–CNCs (~AUD 850/kg), resulting in a comparatively lower cost for preparing native L–CNCs/PVA composite films. Overall, this study shows that the proposed method of production and use of native L–CNCs can be an economic approach to deliver UV-shielding properties for potential applications, such as food packaging.

Funder

Deakin University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3