Detecting Carbon Nanotube Orientation with Topological Analysis of Scanning Electron Micrographs

Author:

Dong Liyu,Hang Haibin,Park Jin GyuORCID,Mio Washington,Liang Richard

Abstract

As the aerospace industry is increasingly demanding stronger, lightweight materials, ultra-strong carbon nanotube (CNT) composites with highly aligned CNT network structures could be the answer. In this work, a novel methodology applying topological data analysis (TDA) to scanning electron microscope (SEM) images was developed to detect CNT orientation. The CNT bundle extensions in certain directions were summarized algebraically and expressed as visible barcodes. The barcodes were then calculated and converted into the total spread function, V(X, θ), from which the alignment fraction and the preferred direction could be determined. For validation purposes, the random CNT sheets were mechanically stretched at various strain ratios ranging from 0 to 40%, and quantitative TDA was conducted based on the SEM images taken at random positions. The results showed high consistency (R2 = 0.972) compared to Herman’s orientation factors derived from polarized Raman spectroscopy and wide-angle X-ray scattering analysis. Additionally, the TDA method presented great robustness with varying SEM acceleration voltages and magnifications, which might alter the scope of alignment detection. With potential applications in nanofiber systems, this study offers a rapid and simple way to quantify CNT alignment, which plays a crucial role in transferring the CNT properties into engineering products.

Funder

United States Air Force Office of Scientific Research

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3