Small-Sample Seabed Sediment Classification Based on Deep Learning

Author:

Zhao Yuxin12ORCID,Zhu Kexin12ORCID,Zhao Ting3,Zheng Liangfeng12,Deng Xiong12ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Engineering Research Center of Navigation Instruments, Ministry of Education, Harbin 150001, China

3. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Seabed sediment classification is of great significance in acoustic remote sensing. To accurately classify seabed sediments, big data are needed to train the classifier. However, acquiring seabed sediment information is expensive and time-consuming, which makes it crucial to design a well-performing classifier using small-sample seabed sediment data. To avoid data shortage, a self-attention generative adversarial network (SAGAN) was trained for data augmentation in this study. SAGAN consists of a generator, which generates data similar to the real image, and a discriminator, which distinguishes whether the image is real or generated. Furthermore, a new classifier for seabed sediment based on self-attention densely connected convolutional network (SADenseNet) is proposed to improve the classification accuracy of seabed sediment. The SADenseNet was trained using augmented images to improve the classification performance. The self-attention mechanism can scan the global image to obtain global features of the sediment image and is able to highlight key regions, improving the efficiency and accuracy of visual information processing. The proposed SADenseNet trained with the augmented dataset had the best performance, with classification accuracies of 92.31%, 95.72%, 97.85%, and 95.28% for rock, sand, mud, and overall, respectively, with a kappa coefficient of 0.934. The twelve classifiers trained with the augmented dataset improved the classification accuracy by 2.25%, 5.12%, 0.97%, and 2.64% for rock, sand, mud, and overall, respectively, and the kappa coefficient by 0.041 compared to the original dataset. In this study, SAGAN can enrich the features of the data, which makes the trained classification networks have better generalization. Compared with the state-of-the-art classifiers, the proposed SADenseNet has better classification performance.

Funder

Major Project of Chinese National Programs for Fundamental Research and Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3