Brivaracetam and Levetiracetam Suppress Astroglial L-Glutamate Release through Hemichannel via Inhibition of Synaptic Vesicle Protein

Author:

Fukuyama Kouji,Okada MotohiroORCID

Abstract

To explore the pathophysiological mechanisms of antiseizure and adverse behavioural/psychiatric effects of brivaracetam and levetiracetam, in the present study, we determined the effects of brivaracetam and levetiracetam on astroglial L-glutamate release induced by artificial high-frequency oscillation (HFO) bursts using ultra-high-performance liquid chromatography. Additionally, the effects of brivaracetam and levetiracetam on protein expressions of connexin43 (Cx43) and synaptic vesicle protein 2A (SV2A) in the plasma membrane of primary cultured rat astrocytes were determined using a capillary immunoblotting system. Acutely artificial fast-ripple HFO (500 Hz) burst stimulation use-dependently increased L-glutamate release through Cx43-containing hemichannels without affecting the expression of Cx43 or SV2A in the plasma membrane, whereas acute physiological ripple HFO (200 Hz) stimulation did not affect astroglial L-glutamate release or expression of Cx43 or SV2A. Contrarily, subchronic ripple HFO and acute pathological fast-ripple HFO (500 Hz) stimulations use-dependently increased L-glutamate release through Cx43-containing hemichannels and Cx43 expression in the plasma membrane. Subchronic fast-ripple HFO-evoked stimulation produced ectopic expression of SV2A in the plasma membrane, but subchronic ripple HFO stimulation did not generate ectopic SV2A. Subchronic administration of brivaracetam and levetiracetam concentration-dependently suppressed fast-ripple HFO-induced astroglial L-glutamate release and expression of Cx43 and SV2A in the plasma membrane. In contrast, subchronic ripple HFO-evoked stimulation induced astroglial L-glutamate release, and Cx43 expression in the plasma membrane was inhibited by subchronic levetiracetam administration, but was not affected by brivaracetam. These results suggest that brivaracetam and levetiracetam inhibit epileptogenic fast-ripple HFO-induced activated astroglial transmission associated with hemichannels. In contrast, the inhibitory effect of therapeutic-relevant concentrations of levetiracetam on physiological ripple HFO-induced astroglial responses probably contributes to the adverse behavioural/psychiatric effects of levetiracetam.

Funder

Japan Epilepsy Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3