Formaldehyde Removal by Expanded Clay Pellets and Biofilm in Hydroponics of a Green Wall System

Author:

Žorža Laura1,Ceļmalniece Kristīne2,Sieriņa Alise13,Andersone-Ozola Una1,Selga Tūrs1,Ievinsh Gederts1ORCID,Bērziņa Buka3,Bartkevičs Vadims2ORCID,Muter Olga1ORCID

Affiliation:

1. Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia

2. Institute of Food Safety, Animal Health and Environment, BIOR, 3 Lejupes Str., LV-1076 Riga, Latvia

3. Lafivents Ltd., 1B K.Ulmana Ave., LV-1004 Riga, Latvia

Abstract

Air pollution with formaldehyde (FA) has been an emerging concern over recent years. This study was aimed at evaluating the contribution of green wall system-derived expanded clay pellets (ECP) and biofilms to FA removal in liquid phase. The effects of four plant species on this process were compared. An inhibition of the fluorescein diacetate hydrolysis activity of biofilm-derived microorganisms was detected during the exposure to FA in both air and liquid phases, and this effect was plant-species-specific. Liquid chromatography with a UV detector was applied for the quantification of FA. The FA removal activity of ECP in the liquid phase was 76.5 mg ECP−1 after a 24 h incubation in the presence of 100 mg/L FA, while the removal activity of the biofilm differed depending on the plant species used, with the highest values detected in the set with Mentha aquatica, i.e., 59.2 mg ECP−1. The overall FA removal from the liquid phase during 24 h varied in the range from 63% to 82% with the initial FA concentration of 100 mg/L. Differences in biofilm formation upon ECP enrichment were detected by using confocal laser scanning microscopy. These results contribute to the understanding of air biofiltration mechanisms in hydroponic systems.

Funder

Research and development of bioremediation-based indoor air biofiltration system

European Regional Development Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3