A Discrete Cooperative Control Method for Production Scheduling Problem of Assembly Manufacturing System

Author:

Wang Xiao1,Liu Mei2,Zhong Peisi1,Zhang Chao1,Zhang Dawei1

Affiliation:

1. Department of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Advanced Manufacturing Technology Center, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

With a sharp decrease in resource utilization of the complex production process, integrated scheduling methods are urgently needed in assembly manufacturing industries. To this end, this paper presents an integrated scheduling with jobs processing and assembly sequence (ISJPAS) problem where jobs and assemblies can be processed simultaneously. As the first contribution to this work, we develop a mixed integer nonlinear programming model (MINLP) that aims at minimizing maximum completion time and determining the earliness and tardiness of jobs and resulting inventory time. The structured property of the optimal scheduling solution is analyzed with regard to job sequencing and assembly sequencing. The NP-hard nature of the problem is proved, which provides upper and lower bounds on the optimal solution. Second, an efficient discrete assembly time and arrival time control (DAATC) method is presented based on continuous time variable control models. From a modified set of benchmark problems, the proposed method is tested by comparing four assembly association levels in real applications. The comparisons indicate the potentiality of our method to satisfy the due date. Lastly, relevance of practical applications are discussed, and several future research avenues are emphasized.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3