Bridging GNSS Outages with IMU and Odometry: A Case Study for Agricultural Vehicles

Author:

Reitbauer EvaORCID,Schmied Christoph

Abstract

Nowadays, many precision farming applications rely on the use of GNSS-RTK. However, when it comes to autonomous agricultural vehicles, GNSS cannot be used as a stand-alone system for positioning. To ensure high availability and robustness of the positioning solution, GNSS-RTK must be fused with additional sensors. This paper presents a novel sensor fusion algorithm tailored to tracked agricultural vehicles. GNSS-RTK, an IMU and wheel speed sensors are fused in an error-state Kalman filter to estimate position and attitude of the vehicle. An odometry model for tracked vehicles is introduced which is used to propagate the filter state. By using both IMU and wheel speed sensors, specific motion characteristics of tracked vehicles such as slippage can be included in the dynamic model. The presented sensor fusion algorithm is tested at a composting site using a tracked compost turner. The sensor measurements are recorded using the Robot Operating System (ROS). To analyze the achievable accuracies for position and attitude of the vehicle, a precise reference trajectory is measured using two robotic total stations. The resulting trajectory of the error-state filter is then compared to the reference trajectory. To analyze how well the proposed error-state filter is suited to bridge GNSS outages, GNSS outages of 30 s are simulated in post-processing. During these outages, the vehicle’s state is propagated using the wheel speed sensors, IMU, and the dynamic model for tracked vehicles. The results show that after 30 s of GNSS outage, the estimated horizontal position of the vehicle still has a sub-decimetre accuracy.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3