A Study on the Architecture of Artificial Neural Network Considering Injection-Molding Process Steps

Author:

Lee Junhan1,Kim Jongsun1,Kim Jongsu1

Affiliation:

1. Molding & Metal Forming R & D Department, Korea Institute of Industrial Technology, Bucheon 14442, Republic of Korea

Abstract

In this study, an artificial neural network (ANN) was established to predict product properties (mass, diameter, height) using six process conditions of the injection-molding process (melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling time) as input parameters. The injection-molding process consists of continuous sequential stages, including the injection stage, packing stage, and cooling stage. However, the related research tends to have an insufficient incorporation of structural characteristics based on these basic process stages. Therefore, in order to incorporate these process stages and characteristics into the ANN, a process-based multi-task learning technique was applied to the connection between the input parameters and the front-end of the hidden layer. This resulted in the construction of two network structures, and their performance was evaluated by comparing them with the typical network structure. The results showed that a multi-task learning architecture that incorporated process-level specific structures in the connections between the input parameters and the front end of the hidden layer yielded relatively better root mean square errors (RMSEs) values than a conventional neural network architecture, by as much as two orders of magnitude. Based on these results, this study has provided guidance for the construction of artificial neural networks for injection-molding processes that incorporates process-stage specific features and structures in the architecture.

Funder

Ministry of Trade, Industry and Energy

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3