Enhanced Low-Density Silicone Foams Blown by Water–Hydroxyl Blends

Author:

Rebane Ingrid1ORCID,Levin Karl Jakob1ORCID,Mäeorg Uno2,Johanson Urmas1ORCID,Piirimägi Peeter3,Tätte Tauri1,Tamm Tarmo1ORCID

Affiliation:

1. Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia

2. Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

3. Estelaxe Ltd., Kivimurru 2, 65605 Võru, Estonia

Abstract

Water, alcohols, diols, and glycerol are low-cost blowing agents that can be used to create the desired silicone foam structures. Although their combined use can be beneficial, it remains unclear how it affects the physical properties of the resulting materials. We conducted a comparative study of these hydroxyl-bearing blowing agents in fumed silica- and mica-filled polymer composite systems for simultaneous blowing and crosslinking to obtain a low-density, uniform porosity and superior mechanical properties. The foams were optimized for a uniform open-pore structure with densities ranging from 75 to 150 kg‧m−3. Varying the diol chain length (Cn) from one to seven carbons can alter the foam density and structure, thereby enhancing the foam tensile strength while maintaining a low density. Replacing 10 mol% of water with 1,4-butanediol decreased the density by 26%, while increasing the specific strength by 5%. By combining glycerol and water blowing, the resulting foams exhibited a 30% lower apparent density than their water-blown analogs. The results further showed that Cn > 4 alkane chain diols had an odd–even effect on the apparent density and cell wall thickness. All foamable compositions had viscosities of approximately 7000 cSt and curing times below 2 min, allowing for quick dispensing and sufficient time for the foam to cure in semi-industrial volumes.

Funder

SA Archimedes

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3