Petal-like Patterning of Polylactide/Poly (Butylene Succinate) Thin Films Induced by Phase Separation

Author:

Wang Lili1ORCID,Wang Yujie12,Mou Chudi1,Wang Wanjie1ORCID,Zhu Chengshen1,He Suqin1,Liu Hao1ORCID,Liu Wentao1ORCID

Affiliation:

1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

2. School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 451191, China

Abstract

Biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polylactide (PLA) and poly (butylene succinate) (PBS) are particularly noteworthy because of their excellent biodegradability. However, the drawbacks of their mechanical properties prompts the need to compound them to achieve the desired strength. The characteristics of the interface of the composite material determine the realization of its final performance. The study of the interface and microstructure of composites is essential for the development of products from degradable polymers. The morphology evolution and microcrystal structure of spin-casted fully biodegradable (PLA/PBS) blend films were investigated using atomic force microscopy (AFM)-based nanomechanical mapping. Results show that intact blend films present an obvious phase separation, where the PBS phase is uniformly dispersed in the PLA phase in the form of pores. Furthermore, the size and number of the PBS phase have a power exponential relationship and linear relationship with PBS loading, respectively. Intriguingly, after annealing at 80 °C for 30 min, the PLA phase formed an orderly petal-like microcrystalline structure centered on the PBS phase. Moreover, the microcrystalline morphology changed from a “daisy type” to a “sunflower type” with the increased size of the PBS phase. Since the size of the PBS phase is controllable, a new method for preparing microscopic patterns using fully biodegradable polymers is proposed.

Funder

Colleges and Universities of Henan Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3