Vancomycin-Loaded 3D-Printed Polylactic Acid–Hydroxyapatite Scaffolds for Bone Tissue Engineering

Author:

Pérez-Davila Sara12ORCID,Potel-Alvarellos Carmen23ORCID,Carballo Raquel23ORCID,González-Rodríguez Laura12ORCID,López-Álvarez Miriam12ORCID,Serra Julia12,Díaz-Rodríguez Patricia4,Landín Mariana4ORCID,González Pío12ORCID

Affiliation:

1. CINTECX, Universidade de Vigo, Grupo Novos Materiais, 36310 Vigo, Spain

2. Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain

3. Laboratorio de Microbiología, Complejo Hospitalario Universitario de Vigo, 36312 Vigo, Spain

4. Pharmacology, Pharmacy, and Pharmaceutical Technology Department, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials, iMATUS and Health Research Institute of Santiago de Compositela (IDIS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain

Abstract

The regeneration of bone remains one of the main challenges in the biomedical field, with the need to provide more personalized and multifunctional solutions. The other persistent challenge is related to the local prevention of infections after implantation surgery. To fulfill the first one and provide customized scaffolds with complex geometries, 3D printing is being investigated, with polylactic acid (PLA) as the biomaterial mostly used, given its thermoplastic properties. The 3D printing of PLA in combination with hydroxyapatite (HA) is also under research, to mimic the native mechanical and biological properties, providing more functional scaffolds. Finally, to fulfill the second one, antibacterial drugs locally incorporated into biodegradable scaffolds are also under investigation. This work aims to develop vancomycin-loaded 3D-printed PLA–HA scaffolds offering a dual functionality: local prevention of infections and personalized biodegradable scaffolds with osseointegrative properties. For this, the antibacterial drug vancomycin was incorporated into 3D-printed PLA–HA scaffolds using three loading methodologies: (1) dip coating, (2) drop coating, and (3) direct incorporation in the 3D printing with PLA and HA. A systematic characterization was performed, including release kinetics, Staphylococcus aureus antibacterial/antibiofilm activities and cytocompatibility. The results demonstrated the feasibility of the vancomycin-loaded 3D-printed PLA–HA scaffolds as drug-releasing vehicles with significant antibacterial effects for the three methodologies. In relation to the drug release kinetics, the (1) dip- and (2) drop-coating methodologies achieved burst release (first 60 min) of around 80–90% of the loaded vancomycin, followed by a slower release of the remaining drug for up to 48 h, while the (3) 3D printing presented an extended release beyond 7 days as the polymer degraded. The cytocompatibility of the vancomycin-loaded scaffolds was also confirmed.

Funder

Ministerio Ciencia e Innovación España

Xunta de Galicia Program for Consolidación e estructuración de unidades de investigación compe-titivas

Xunta de Galicia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3