Review of Wireless RFID Strain Sensing Technology in Structural Health Monitoring

Author:

Liu Gang12,Wang Qi-Ang12ORCID,Jiao Guiyue1,Dang Pengyuan1,Nie Guohao1,Liu Zichen1,Sun Junyu1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory for Geomechanics & Deep Underground Engineering, Xuzhou 221116, China

Abstract

Strain-based condition evaluation has garnered as a crucial method for the structural health monitoring (SHM) of large-scale engineering structures. The use of traditional wired strain sensors becomes tedious and time-consuming due to their complex wiring operation, more workload, and instrumentation cost to collect sufficient data for condition state evaluation, especially for large-scale engineering structures. The advent of wireless and passive RFID technologies with high efficiency and inexpensive hardware equipment has brought a new era of next-generation intelligent strain monitoring systems for engineering structures. Thus, this study systematically summarizes the recent research progress of cutting-edge RFID strain sensing technologies. Firstly, this study introduces the importance of structural health monitoring and strain sensing. Then, RFID technology is demonstrated including RFID technology’s basic working principle and system component composition. Further, the design and application of various kinds of RFID strain sensors in SHM are presented including passive RFID strain sensing technology, active RFID strain sensing technology, semi-passive RFID strain sensing technology, Ultra High-frequency RFID strain sensing technology, chipless RFID strain sensing technology, and wireless strain sensing based on multi-sensory RFID system, etc., expounding their advantages, disadvantages, and application status. To the authors’ knowledge, the study initially provides a systematic comprehensive review of a suite of RFID strain sensing technology that has been developed in recent years within the context of structural health monitoring.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RFID localization in construction with IoT and security integration;Automation in Construction;2024-03

2. Wearable Biosensors on Sutures and Threads;Wearable Biosensing in Medicine and Healthcare;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3