Earth Observation—An Essential Tool towards Effective Aquatic Ecosystems’ Management under a Climate in Change

Author:

Lisboa Filipe1,Brotas Vanda12,Santos Filipe Duarte3

Affiliation:

1. MARE—Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal

2. PML—Plymouth Marine Laboratory, Plymouth, Devon PL1 3DH, UK

3. CCIAM-CE3C, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal

Abstract

Numerous policies have been proposed by international and supranational institutions, such as the European Union, to surveil Earth from space and furnish indicators of environmental conditions across diverse scenarios. In tandem with these policies, different initiatives, particularly on both sides of the Atlantic, have emerged to provide valuable data for environmental management such as the concept of essential climate variables. However, a key question arises: do the available data align with the monitoring requirements outlined in these policies? In this paper, we concentrate on Earth Observation (EO) optical data applications for environmental monitoring, with a specific emphasis on ocean colour. In a rapidly changing climate, it becomes imperative to consider data requirements for upcoming space missions. We place particular significance on the application of these data when monitoring lakes and marine protected areas (MPAs). These two use cases, albeit very different in nature, underscore the necessity for higher-spatial-resolution imagery to effectively study these vital habitats. Limnological ecosystems, sensitive to ice melting and temperature fluctuations, serve as crucial indicators of a climate in change. Simultaneously, MPAs, although generally small in size, play a crucial role in safeguarding marine biodiversity and supporting sustainable marine resource management. They are increasingly acknowledged as a critical component of global efforts to conserve and manage marine ecosystems, as exemplified by Target 3 of the Kunming–Montreal Global Biodiversity Framework (GBF), which aims to effectively conserve 30% of terrestrial, inland water, coastal, and marine areas by 2030 through protected areas and other conservation measures. In this paper, we analysed different policies concerning EO data and their application to environmental-based monitoring. We also reviewed and analysed the existing relevant literature in order to find gaps that need to be bridged to effectively monitor these habitats in an ecosystem-based approach, making data more accessible, leading to the generation of water quality indicators derived from new high- and very high-resolution satellite monitoring focusing especially on Chlorophyll-a concentrations. Such data are pivotal for comprehending, at small and local scales, how these habitats are responding to climate change and various stressors.

Funder

Portuguese Fundação para a Ciência e a Tecnologia

European Union’s Horizon 2020 research and innovation programme

Project Portugal Twinning for Innovation and Excellence in Marine Science and Earth Observation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3