Discovery of 1H-benzo[d]imidazole-(halogenated) Benzylidenebenzohydrazide Hybrids as Potential Multi-Kinase Inhibitors

Author:

Mirgany Tebyan O.1,Asiri Hanadi H.1,Rahman A. F. M. Motiur1ORCID,Alanazi Mohammed M.1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

In an effort to develop improved and effective targeted tyrosine kinase inhibitors (TKIs), a series of twelve novel compounds with the structural motif “(E)-4-(((1H-benzo[d]imidazol-2-yl)methyl)amino)-N′-(halogenated)benzylidenebenzohydrazide” were successfully synthesized in three steps, yielding high product yields (53–97%). Among this new class of compounds, 6c and 6h-j exhibited excellent cytotoxic effects against four different cancer cell lines, with half-maximal inhibitory concentration (IC50) values ranging from 7.82 to 21.48 μM. Notably, compounds 6h and 6i emerged as the most potent inhibitors, demonstrating significant activity against key kinases such as EGFR, HER2, and CDK2. Furthermore, compound 6h displayed potent inhibitory activity against AURKC, while 6i showed potent inhibitory effects against the mTOR enzyme, with excellent IC50 values comparable with well-established TKIs. The mechanistic study of lead compound 6i revealed its ability to induce cell cycle arrest and apoptosis in HepG2 liver cancer cells. This was accompanied by upregulation of pro-apoptotic caspase-3 and Bax and downregulation of anti-apoptotic Bcl-2. Additionally, molecular docking studies indicated that the binding interactions of compounds 6h and 6i with the target enzymes give multiple interactions. These results underscore the ability of compound 6i as a compelling lead candidate warranting further optimization and development as a potent multi-targeted kinase inhibitor, which could have significant implications for the treatment of various cancers. The detailed structural optimization, mechanism of action, and in vivo evaluation of this class of compounds warrant further investigation to assess their therapeutic potential.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3