Manipulating the Structure and Characterization of Sr1−xLaxTiO3 Nanocubes toward the Photodegradation of 2-Naphthol under Artificial Solar Light

Author:

Le Minh-VienORCID,Vo Ngoc-Quoc-Duy,Le Quoc-Cuong,Tran Vy Anh,Phan Thi-Que-Phuong,Huang Chao-WeiORCID,Nguyen Van-HuyORCID

Abstract

Effective La-doped SrTiO3 (Sr1−xLaxTiO3, x = 0–0.1 mol.% La-doped) nanocubes were successfully synthesized by a hydrothermal method. The influence of different La dopant concentrations on the physicochemical properties of the host structure of SrTiO3 was fully characterized. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed that the Sr2+ in the crystal lattice of SrTiO3 was substituted by La3+. As a result, the absorption region of the Sr1−xLaxTiO3 could be extended to visible light. Scanning electron microscopy (SEM) images confirmed that their morphologies are associated with an increased surface area and an increased La-doping concentration. The decrease in the photoluminescence (PL) intensity of the dopant samples showed more defect levels created by the dopant La+3 cations in the SrTiO3 structure. The photocatalytic activities of Sr1−xLaxTiO3 were evaluated with regard to the degradation of 2-naphthol at typical conditions under artificial solar light. Among the candidates, Sr0.95La0.05TiO3 exhibited the highest photocatalytic performance for the degradation of 2-naphthol, which reached 92% degradation efficiency, corresponding to a 0.0196 min−1 degradation rate constant, within 180 minutes of irradiation. Manipulating the structure of Sr1−xLaxTiO3 nanocubes could produce a more effective and stable degradation efficiency than their parent compound, SrTiO3. The parameters remarkably influence the Sr1−xLaxTiO3 nanocubes’ structure, and their degradation efficiencies were also studied. Undoubtedly, substantial breakthroughs of Sr1−xLaxTiO3 nanocube photocatalysts toward the treatment of organic contaminants from industrial wastewater are expected shortly.

Funder

Ho Chi Minh City University of Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3