Synthesis, Characterization and Photoelectric Properties of Fe2O3 Incorporated TiO2 Photocatalyst Nanocomposites

Author:

Ali Atif Mossad,Sayed Mahmoud Ahmed,Algarni Hamed,Ganesh Vanga,Aslam MuhdORCID,Ismail Adel AliORCID,El-Bery Haitham MohamedORCID

Abstract

In the present work we report the sol-gel synthesis of pure TiO2 and (TiO2)1−x(Fe2O3)x nanocomposites with different Fe2O3 contents (x = 0, 0.1, 0.5, and 1.0 for pure TiO2, Fe2O3 incorporated 0.1, 0.5, and pure Fe2O3 which are denoted as PT, 0.1F, 0.5F, and PF, respectively). The structural, morphological, optical, and surface texture of the prepared nanocomposites were characterized using various techniques. The structural studies confirm the strong influence of Fe2O3 contents on the crystallite sizes and dislocation values. The size of the crystallites was increased by the increase in Fe2O3 contents. The bandgap values elucidated from DRS analysis were decreased from 3.15 eV to 1.91 eV with increasing Fe2O3 contents. The N2-Physorption analysis has confirmed the mesoporous nature of the samples with a comparable specific surface area of 35 m2/g. The photoelectrochemical measurements (CV, CA and EIS) were performed to assess the photoelectric properties of the prepared materials. It was found that the PT samples have the highest catalytic activity and photocurrent response compared to other composites. The reduction in current density was as follows: 2.8, 1.65, 1.5 and 0.9 mA/cm2, while the photocurrent response was ca. 800, 450, 45, 35 µA/cm2 for PT, 0.1F, 0.5F and PF samples, respectively. The EIS results showed that the (TiO2)1−x(Fe2O3)x nanocomposites exhibit lower charge transfer resistance than pure titania and hematite samples.

Funder

The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3