Nanosheet-Like Ho2O3 and Sr-Ho2O3 Catalysts for Oxidative Coupling of Methane

Author:

Fan Yuqiao,Miao Changxi,Yue Yinghong,Hua WeimingORCID,Gao Zi

Abstract

In this work, Ho2O3 nanosheets were synthesized by a hydrothermal method. A series of Sr-modified Ho2O3 nanosheets (Sr-Ho2O3-NS) with a Sr/Ho molar ratio between 0.02 and 0.06 were prepared via an impregnation method. These catalysts were characterized by several techniques such as XRD, N2 adsorption, SEM, TEM, XPS, O2-TPD (temperature-programmed desorption), and CO2-TPD, and they were studied with respect to their performances in the oxidative coupling of methane (OCM). In contrast to Ho2O3 nanoparticles, Ho2O3 nanosheets display greater CH4 conversion and C2-C3 selectivity, which could be related to the preferentially exposed (222) facet on the surface of the latter catalyst. The incorporation of small amounts of Sr into Ho2O3 nanosheets leads to a higher ratio of (O− + O2−)/O2− as well as an enhanced amount of chemisorbed oxygen species and moderate basic sites, which in turn improves the OCM performance. The optimal catalytic behavior is achievable on the 0.04Sr-Ho2O3-NS catalyst with a Sr/Ho molar ratio of 0.04, which gives a 24.0% conversion of CH4 with 56.7% selectivity to C2-C3 at 650 °C. The C2-C3 yield is well correlated with the amount of moderate basic sites present on the catalysts.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3