Transition Metal Ions as Ozonation Catalysts: An Alternative Process of Heterogeneous Catalytic Ozonation

Author:

Psaltou SavvinaORCID,Sioumpoura Konstantina,Kaprara EfthimiaORCID,Mitrakas Manassis,Zouboulis AnastasiosORCID

Abstract

The aim of this study is to elucidate the mechanism of micropollutants’ removal in drinking water by the application of catalytic ozonation, using transition metals as appropriate catalysts. For that purpose, the degradation of 500 μg/L of p-chlorobenzoic acid (p-CBA) and benzotriazole with the addition of 2 mg/L of ozone in the presence of 1 mg/L of Co(II) or Fe(II) and at pH 7.8 were examined. It was found that in distilled water experiments, both metal ions can be characterized as catalysts, enhancing the ozonation process; however, in the natural water matrix, only iron presented higher removal rates of examined organic pollutants, when compared to single ozonation. The metal ions present catalytic activity, when they can form precipitates, hence converting the initially homogeneous process of catalytic ozonation towards a heterogeneous one. However, when 2 mg/L of ozone was applied in natural water experiments, Co(II)—unlike Fe(II)—could not be oxidized into its trivalent form, hence it cannot precipitate as Co(OH)3. Therefore, under these experimental conditions, this metal was not found to present any catalytic activity. Nevertheless, the addition of phosphates (PO43−) in concentrations higher than 100 mg/L can increase the oxidation ability of the Co(II)/O3 system, due to the resulting sufficient formation of Co3(PO4)2 precipitates. Although cobalt can enhance the •OH production (and therefore, the ozonation procedure) under these conditions, the relatively highly added concentration of phosphate ions makes the treated water non-potable, resulting in the application of further treatment to remove the excess phosphates. Therefore, only Fe(II) can be considered as a sufficient catalyst to enhance the ozonation processes.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3