Criteria for Engineering Cutinases: Bioinformatics Analysis of Catalophores

Author:

Fortuna SaraORCID,Cespugli Marco,Todea Anamaria,Pellis AlessandroORCID,Gardossi LuciaORCID

Abstract

Cutinases are bacterial and fungal enzymes that catalyze the hydrolysis of natural cutin, a three-dimensional inter-esterified polyester with epoxy-hydroxy fatty acids with chain lengths between 16 and 18 carbon atoms. Due to their ability to accept long chain substrates, cutinases are also effective in catalyzing in vitro both the degradation and synthesis of several synthetic polyesters and polyamides. Here, we present a bioinformatics study that intends to correlate the structural features of cutinases with their catalytic properties to provide rational basis for their effective exploitation, particularly in polymer synthesis and biodegradation. The bioinformatics study used the BioGPS method (Global Positioning System in Biological Space) that computed molecular descriptors based on Molecular Interaction Fields (MIFs) described in the GRID force field. The information was used to generate catalophores, spatial representations of the ability of each enzymatic active site to establish hydrophobic and electrostatic interactions. These tools were exploited for comparing cutinases to other serine-hydrolases enzymes, namely lipases, esterases, amidases and proteases, and for highlighting differences and similarities that might guide rational engineering strategies. Structural features of cutinases with their catalytic properties were correlated. The “catalophore” of cutinases indicate shared features with lipases and esterases.

Funder

for the financial support provided through the CARDIGAN project (CARDoon valorisation by InteGrAted biorefiNery, Progetti di Ricerca di Interesse Nazionale -Bando 2017

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3