Synthesis and Characterization of Cobalt and Nitrogen Co-Doped Peat-Derived Carbon Catalysts for Oxygen Reduction in Acidic Media

Author:

Jäger Rutha,Teppor Patrick,Paalo Maarja,Härmas Meelis,Adamson Anu,Volobujeva Olga,Härk EneliORCID,Kochovski Zdravko,Romann Tavo,Härmas RiinuORCID,Aruväli Jaan,Kikas Arvo,Lust EnnORCID

Abstract

In this study, several peat-derived carbons (PDC) were synthesized using various carbonization protocols. It was found that depending on the carbonization method, carbons with very different surface morphologies, elemental compositions, porosities, and oxygen reduction reaction (ORR) activities were obtained. Five carbons were used as carbon supports to synthesize Co-N/PDC catalysts, and five different ORR catalysts were acquired. The surface analysis revealed that a higher nitrogen content, number of surface oxide defects, and higher specific surface area lead to higher ORR activity of the Co-N/PDC catalysts in acidic solution. The catalyst Co-N/C-2(ZnCl2), which was synthesized from ZnCl2-activated and pyrolyzed peat, showed the highest ORR activity in both rotating disk electrode and polymer electrolyte membrane fuel cell tests. A maximum power density value of 210 mW cm−2 has been obtained. The results of this study indicate that PDCs are promising candidates for the synthesis of active non-platinum group metal type catalysts.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3