Author:
Chen Yu-Jia,Huang Song-Hui,Uan Jun-Yen,Lin Hao-Tung
Abstract
This work recovered Ni or Cu cations from simulated electroplating wastewater to synthesize Ni/Cu nano-catalysts for H2 generation by ethanol steam reforming (ESR). Aluminum lathe waste was used as a framework to prepare the structured catalyst. Li–Al–CO3 layered double hydroxide (LDH) was electrodeposited on the surface of the framework. The LDH was in a platelet-like structure, working as a support for the formation of the precursor of the metal catalysts. The catalytic performance and the coke properties of a 6Cu_6Ni two-stage catalyst configuration herein used for ESR catalytic reaction were studied. The Cu–Ni two-stage catalyst configuration (6Cu_6Ni) yielded more H2 (~10%) than that by using the Ni-based catalyst (6Ni) only. The 6Cu_6Ni catalyst configuration also resulted in a relatively stable H2 generation rate vs. time, with nearly no decline during the 5-h reaction. Through the pre-reaction of ethanol-steam mixture with Cu/LiAlO2 catalyst, the Ni/LiAlO2 catalyst in the 6Cu_6Ni catalyst configuration could steadily decompose acetaldehyde, and rare acetate groups, which would evolve condensed coke, were formed. The Ni nanoparticles were observed to be lifted and separated by the carbon filaments from the support and had no indication of sintering, contributing to the bare deactivation of the Ni/LiAlO2 catalyst in 6Cu_6Ni.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献