Influence of Phase Composition and Pretreatment on the Conversion of Iron Oxides into Iron Carbides in Syngas Atmospheres

Author:

Arinchtein AleksORCID,Ye Meng-Yang,Geske Michael,Frisch Marvin,Kraehnert Ralph

Abstract

CO2 Fischer–Tropsch synthesis (CO2–FTS) is a promising technology enabling conversion of CO2 into valuable chemical feedstocks via hydrogenation. Iron–based CO2–FTS catalysts are known for their high activities and selectivities towards the formation of higher hydrocarbons. Importantly, iron carbides are the presumed active phase strongly associated with the formation of higher hydrocarbons. Yet, many factors such as reaction temperature, atmosphere, and pressure can lead to complex transformations between different oxide and/or carbide phases, which, in turn, alter selectivity. Thus, understanding the mechanism and kinetics of carbide formation remains challenging. We propose model–type iron oxide films of controlled nanostructure and phase composition as model materials to study carbide formation in syngas atmospheres. In the present work, different iron oxide precursor films with controlled phase composition (hematite, ferrihydrite, maghemite, maghemite/magnetite) and ordered mesoporosity are synthesized using the evaporation–induced self–assembly (EISA) approach. The model materials are then exposed to a controlled atmosphere of CO/H2 at 300 °C. Physicochemical analysis of the treated materials indicates that all oxides convert into carbides with a core–shell structure. The structure appears to consist of crystalline carbide cores surrounded by a partially oxidized carbide shell of low crystallinity. Larger crystallites in the original iron oxide result in larger carbide cores. The presented simple route for the synthesis and analysis of soft–templated iron carbide films will enable the elucidation of the dynamics of the oxide to carbide transformation in future work.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3