Handling Measurement Delay in Iterative Real-Time Optimization Methods

Author:

Gottu Mukkula Anwesh ReddyORCID,Engell SebastianORCID

Abstract

This paper is concerned with the real-time optimization (RTO) of chemical plants, i.e., the optimization of the steady-state operating points during operation, based on inaccurate models. Specifically, modifier adaptation is employed to cope with the plant-model mismatch, which corrects the plant model and the constraint functions by bias and gradient correction terms that are computed from measured variables at the steady-states of the plant. This implies that the sampling time of the iterative RTO scheme is lower-bounded by the time to reach a new steady-state after the previously computed inputs were applied. If analytical process measurements (PAT technology) are used to obtain the steady-state responses, time delays occur due to the measurement delay of the PAT device and due to the transportation delay if the samples are transported to the instrument via pipes. This situation is quite common because the PAT devices can often only be installed at a certain distance from the measurement location. The presence of these time delays slows down the iterative real-time optimization, as the time from the application of a new set of inputs to receiving the steady-state information increases further. In this paper, a proactive perturbation scheme is proposed to efficiently utilize the idle time by intelligently scheduling the process inputs taking into account the time delays to obtain the steady-state process measurements. The performance of the proposed proactive perturbation scheme is demonstrated for two examples, the Williams–Otto reactor benchmark and a lithiation process. The simulation results show that the proposed proactive perturbation scheme can speed up the convergence to the true plant optimum significantly.

Funder

Horizon 2020

Deutsche Forschungsgemeinschaft (DFG) - TRR 63 “Integrierte chemische Prozesse in flüssigen Mehrphasensystemen”

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference43 articles.

1. Modifier Adaptation for Real-Time Optimization—Methods and Applications

2. Real-time operations optimization of continuous processes;Marlin,1997

3. User’s Guide for NPSOL 5.0: A Fortran Package for Nonlinear Programming;Philip,2001

4. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization

5. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3