Semantic Modelling Approach for Safety-Related Traffic Information Using DATEX II

Author:

Samper-Zapater J. Javier1ORCID,Gutiérrez-Moret Julián1ORCID,Rocha Jose Macario1,Martinez-Durá Juan José1ORCID,Tomás Vicente R.2ORCID

Affiliation:

1. IRTIC—Research Institute on Robotics and Information and Communication Technologies, University de València, 46980 Valencia, Spain

2. Department of Computer Science and Engineering, University Jaume I, 12061 Castellón de la Plana, Spain

Abstract

The significance of Linked Open Data datasets for traffic information extends beyond just including open traffic data. It incorporates links to other relevant thematic datasets available on the web. This enables federated queries across different data platforms from various countries and sectors, such as transport, geospatial, environmental, weather, and more. Businesses, researchers, national operators, administrators, and citizens at large can benefit from having dynamic traffic open data connected to heterogeneous datasets across Member States. This paper focuses on the development of a semantic model that enhances the basic service to access open traffic data through a LOD-enhanced Traffic Information System in alignment with the ITS Directive (2010/40/EU). The objective is not limited to just viewing or downloading data but also to improve the extraction of meaningful information and enable other types of services that are only achievable through LOD. By structuring the information using the RDF format meant for machines and employing SPARQL for querying, LOD allows for comprehensive and unified access to all datasets. Considering that the European standard DATEX II is widely used in many priority areas and services mentioned in the ITS Directive, LOD DATEX II was developed as a complementary approach to DATEX II XML. This facilitates the accessibility and comprehensibility of European traffic data and services. As part of this development, an ontological model called dtx_srti, based on the DATEX II Ontology, was created to support these efforts.

Funder

European Climate, Infrastructure and Environment Executive Agency

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3