Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete

Author:

Liao Xin,Zhang WendaORCID,Chen JiannanORCID,Wang Qingfeng,Wu Xiyong,Ling Sixiang,Guo Deping

Abstract

Black shale, which usually contains pyrite, is easily oxidized and generates acid discharge. This acidic environment is not favorable for concrete in engineering applications and is likely to affect the durability of engineering structures. This study investigated the effect of acid discharge from the weathering of black shale on the strength of concrete under partially immersed conditions. Black shale concrete immersion tests were conducted at different immersion depths to evaluate the oxidation conduction of black shale. Water chemistry and oxidation products were monitored during and after the immersion tests. The quality and strength of the black shale and concrete specimens were obtained before and after the immersion by testing the ultrasonic wave velocity and uniaxial compressive strength. The results indicated that a lower immersion depth of black shale reveals a higher degree of oxidation, and the capillary zone in black shale is critical for black shale oxidation in terms of mass transfer. The ultrasonic velocity of the concrete showed different change patterns in the immersed and non-immersed zones. Precipitation and additional hydration enhanced the quality and entirety of the concrete (increased ultrasonic velocity) at the non-immersed or partially-immersed zones, while the dissolution of concrete was dominant in the immersed zone (decreased ultrasonic velocity) and induced a reduction of concrete quality. The compressive strength of the concrete was enhanced after immersion. The concrete strength slightly increased by 5–15%. This phenomenon is attributed to the filling of the voids by the precipitations of minerals, such as goethite and anhydrite.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3