Assessment of Groundwater Potential Zones by Integrating Hydrogeological Data, Geographic Information Systems, Remote Sensing, and Analytical Hierarchical Process Techniques in the Jinan Karst Spring Basin of China

Author:

Opoku Portia Annabelle12ORCID,Shu Longcang12,Amoako-Nimako George Kwame3ORCID

Affiliation:

1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

2. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China

3. Independent Researcher, Accra 00233, Ghana

Abstract

Groundwater management in the Jinan Spring basin is hampered by its complex topography, overexploitation, and excessive urbanisation. This has led to springs drying up during dry seasons and a decrease in discharge in recent years. GIS and the AHP were employed to delineate groundwater potential zones using eight thematic layers: slope, geology, lineament density, topographic wetness index (TWI), rainfall, soil, drainage density, and land use/land cover (LULC). The model’s accuracy was assessed by comparing the findings to basin groundwater observation well data. We found that 74% of the observations matched the projected zoning. Further validation utilising the receiver operating characteristic (ROC) curve gave an AUC of 0.736. According to the study, 67.31% of the land has a good GWPZ, 5.60% has a very good one, 27.07% is medium, and 0.03% is low. Heavy rains throughout the rainy season raise water levels. Dry weather lowers water levels. This study’s conclusions will protect groundwater from climate change. Integrating hydrogeological data, GIS, remote sensing, and AHP approaches maximises data use, improves groundwater potential zone delineation, and promotes sustainable groundwater resource management decision making. This integrated method can help land use planners, hydrologists, and policymakers find optimal locations for water supply projects, establish groundwater management techniques, and reduce groundwater risks.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3