Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation

Author:

Nogales-Delgado Sergio1ORCID,Guiberteau Cabanillas Agustina2,Moro Juan Pedro2,Encinar Martín José María3ORCID

Affiliation:

1. Department of Applied Physics, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain

2. Department of Analytical Chemistry, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain

3. Department of Chemical Engineering and Physical-Chemistry, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain

Abstract

The use of alternatives for petroleum-based products is becoming more and more important, especially considering the new and constantly changing geopolitical context, where excessive energy dependence is not desirable. Thus, biodiesel could play an important role in contributing to the implementation of biorefineries, which represent desirable goals in terms of sustainability, green chemistry and the circular economy. However, one challenge related to biodiesel based on vegetable oils is its low oxidative stability, which can alter the properties of these products during storage. To avoid this problem, interesting antioxidants, such as propyl gallate (PG), could be added to biodiesel to allow it to keep its main properties during oxidation. Additionally, monitoring PG content during oxidation is interesting, and the use of voltammetry could be suitable for this purpose. The aim of this work was to assess the effectiveness of PG during cardoon biodiesel oxidation, while monitoring the process through cyclic voltammetry (CV). As a result, it was proven that PG was highly effective, increasing the length of oxidative stability to more than 10 h at low concentrations (600 mg·L−1) and retaining its main properties (viscosity and acidity) during oxidation. Regarding CV, this technique was successfully optimized to determine PG concentration in cardoon biodiesel during oxidation.

Funder

Ministerio de Ciencia e Innovación de España

Junta de Extremadura and FEDER

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3