Lane Departure Warning Mechanism of Limited False Alarm Rate Using Extreme Learning Residual Network and ϵ-Greedy LSTM

Author:

Gao Qiaoming,Yin Huijun,Zhang Weiwei

Abstract

Neglecting the driver behavioral model in lane-departure-warning systems has taken over as the primary reason for false warnings in human–machine interfaces. We propose a machine learning-based mechanism to identify drivers’ unintended lane-departure behaviors, and simultaneously predict the possibility of driver proactive correction after slight departure. First, a deep residual network for driving state feature extraction is established by combining time series sensor data and three serial ReLU residual modules. Based on this feature network, online extreme learning machine is organized to identify a driver’s behavior intention, such as unconscious lane-departure and intentional lane-changing. Once the system senses unconscious lane-departure before crossing the outermost warning boundary, the ϵ-greedy LSTM module in shadow mode is roused to verify the chances of driving the vehicle back to the original lane. Only those unconscious lane-departures with no drivers’ proactive correction behavior are transferred into the warning module, guaranteeing that the system has a limited false alarm rate. In addition, naturalistic driving data of twenty-one drivers are collected to validate the system performance. Compared with the basic time-to-line-crossing (TLC) method and the TLC-DSPLS method, the proposed warning mechanism shows a large-scale reduction of 12.9% on false alarm rate while maintaining the competitive accuracy rate of about 98.8%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3