Abstract
The multifunctional tissue transglutaminase has been demonstrated to act as α1-adrenergic receptor-coupled G protein with GTPase activity in several cell types. To explore further the pathophysiological significance of this function we investigated the in vivo effects of the α1-adrenergic receptor agonist phenylephrine comparing responses in wild type and TG2-/- mice. Injection of phenylephrine, but not a beta3-adrenergic agonist (CL-316,243), resulted in the long-term decline of the respiratory exchange ratio and lower lactate concentration in TG2-/- mice indicating they preferred to utilize fatty acids instead of glucose as fuels. Measurement of tail blood pressure revealed that the vasoconstrictive effect of phenylephrine was milder in TG2-/- mice leading to lower levels of lactate dehydrogenase (LDH) isoenzymes in blood. LDH isoenzyme patterns indicated more damage in lung, liver, kidney, skeletal, and cardiac muscle of wild type mice; the latter was confirmed by a higher level of heart-specific CK-MB. Our data suggest that TG2 as an α1-adrenergic receptor-coupled G protein has important regulatory functions in alpha1-adrenergic receptor-mediated metabolic processes and vascular functions.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献