The Unfolded Protein Response: Neutron-Induced Therapy Autophagy as a Promising Treatment Option for Osteosarcoma

Author:

Oh Ju Yeon,Lee Yeon-JooORCID,Sai SeiORCID,Ohno Tatsuya,Kong Chang-Bae,Lim Sun Ha,Kim Eun Ho

Abstract

Radiotherapy using high linear energy transfer (LET) radiation results in effectively killing tumor cells while minimizing dose (biological effective) to normal tissues to block toxicity. It is well known that high LET radiation leads to lower cell survival per absorbed dose than low LET radiation. High-linear energy transfer (LET) neutron treatment induces autophagy in tumor cells, but its precise mechanisms in osteosarcoma are unknown. Here, we investigated this mechanism and the underlying signaling pathways. Autophagy induction was examined in gamma-ray-treated KHOS/NP and MG63 osteosarcoma cells along with exposure to high-LET neutrons. The relationship between radiosensitivity and autophagy was assessed by plotting the cell surviving fractions against autophagy levels. Neutron treatment increased autophagy rates in irradiated KHOS/NP and MG63 cells; neutrons with high-LETs showed more effective inhibition than those with lower LET gamma-rays. To determine whether the unfolded protein response and Akt-mTOR pathways triggered autophagy, phosphorylated eIF2α and JNK levels, and phospho-Akt, phosphor-mTOR, and phospho-p70S6 levels were, respectively, investigated. High-LET neutron exposure inhibited Akt phosphorylation and increased Beclin 1 expression during the unfolded protein response, thereby enhancing autophagy. The therapeutic efficacy of high-LET neutron radiation was also assessed in vivo using an orthotopic mouse model. Neutron-irradiated mice showed reduced tumor growth without toxicity relative to gamma-ray-treated mice. The effect of high-LET neutron exposure on the expression of signaling proteins LC3, p-elF2a, and p-JNK was investigated by immunohistochemistry. Tumors in high-LET-neutron radiation-treated mice showed higher apoptosis rates, and neutron exposure significantly elevated LC3 expression, and increased p-elF2a and p-JNK expression levels. Overall, these results demonstrate that autophagy is important in radiosensitivity, cell survival, and cellular resistance against high-LET neutron radiation. This correlation between cellular radiosensitivity and autophagy may be used to predict radiosensitivity in osteosarcoma.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3