Cloud Detection from FY-4A’s Geostationary Interferometric Infrared Sounder Using Machine Learning Approaches

Author:

Zhang QiORCID,Yu Yi,Zhang Weimin,Luo Tengling,Wang Xiang

Abstract

FengYun-4A (FY-4A)’s Geostationary Interferometric Infrared Sounder (GIIRS) is the first hyperspectral infrared sounder on board a geostationary satellite, enabling the collection of infrared detection data with high temporal and spectral resolution. As clouds have complex spectral characteristics, and the retrieval of atmospheric profiles incorporating clouds is a significant problem, it is often necessary to undertake cloud detection before further processing procedures for cloud pixels when infrared hyperspectral data is entered into assimilation system. In this study, we proposed machine-learning-based cloud detection models using two kinds of GIIRS channel observation sets (689 channels and 38 channels) as features. Due to differences in surface cover and meteorological elements between land and sea, we chose logistic regression (lr) model for the land and extremely randomized tree (et) model for the sea respectively. Six hundred and eighty-nine channels models produced slightly higher performance (Heidke skill score (HSS) of 0.780 and false alarm rate (FAR) of 16.6% on land, HSS of 0.945 and FAR of 4.7% at sea) than 38 channels models (HSSof 0.741 and FAR of 17.7% on land, HSS of 0.912 and FAR of 7.1% at sea). By comparing visualized cloud detection results with the Himawari-8 Advanced Himawari Imager (AHI) cloud images, the proposed method has a good ability to identify clouds under circumstances such as typhoons, snow covered land, and bright broken clouds. In addition, compared with the collocated Advanced Geosynchronous Radiation Imager (AGRI)-GIIRS cloud detection method, the machine learning cloud detection method has a significant advantage in time cost. This method is not effective for the detection of partially cloudy GIIRS’s field of views, and there are limitations in the scope of spatial application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3