Simplified Synthesis of Renieramycin T Derivatives to Target Cancer Stem Cells via β-Catenin Proteasomal Degradation in Human Lung Cancer

Author:

Ei Zin Zin12ORCID,Racha Satapat123,Yokoya Masashi4ORCID,Hotta Daiki4,Zou Hongbin5,Chanvorachote Pithi12

Affiliation:

1. Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

2. Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

3. Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

4. Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan

5. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

Abstract

Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations and clinical trials focused on CSC regulator β-catenin signaling targeted interventions in malignancies. As part of the ongoing advancements in marine-organism-derived compound development, it was observed that among the six analogs of Renieramycin T (RT), a potential lead alkaloid from the blue sponge Xestospongia sp., the compound DH_32, displayed the most robust anti-cancer activity in lung cancer A549, H23, and H292 cells. In various lung cancer cell lines, DH_32 exhibited the highest efficacy, with IC50 values of 4.06 ± 0.24 μM, 2.07 ± 0.11 μM, and 1.46 ± 0.06 μM in A549, H23, and H292 cells, respectively. In contrast, parental RT compounds had IC50 values of 5.76 ± 0.23 μM, 2.93 ± 0.07 μM, and 1.52 ± 0.05 μM in the same order. Furthermore, at a dosage of 25 nM, DH_32 showed a stronger ability to inhibit colony formation compared to the lead compound, RT. DH_32 was capable of inducing apoptosis in lung cancer cells, as demonstrated by increased PARP cleavage and reduced levels of the proapoptotic protein Bcl2. Our discovery confirms that DH_32 treatment of lung cancer cells led to a reduced level of CD133, which is associated with the suppression of stem-cell-related transcription factors like OCT4. Moreover, DH_32 significantly suppressed the ability of tumor spheroids to form compared to the original RT compound. Additionally, DH_32 inhibited CSCs by promoting the degradation of β-catenin through ubiquitin–proteasomal pathways. In computational molecular docking, a high-affinity interaction was observed between DH_32 (grid score = −35.559 kcal/mol) and β-catenin, indicating a stronger binding interaction compared to the reference compound R9Q (grid score = −29.044 kcal/mol). In summary, DH_32, a newly developed derivative of the right-half analog of RT, effectively inhibited the initiation of lung cancer spheroids and the self-renewal of lung cancer cells through the upstream process of β-catenin ubiquitin–proteasomal degradation.

Funder

Thailand Science research and Innovation Fund Chulalongkorn University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3